
s

Fast Time-Varying Volume Rendering Using

Time-Space Partition (TSP) Tree

Han-Wei Shen*

MRJ Technology Solutions / NASA Ames Research Center

Ling-Jen Chiang f

MRJ Technology Solutions / NASA Ames Research Center

Kwan-Liu Ma*

ICASE

Abstract

We present a new algorithm for rapid rendering of time-varying vol-
umes. A new hierarchical data structure that is capable of capturing

both the temporal and the spatial coherence is proposed. Conven-
tionai hierarchical data structures such as octrees are effective in

characterizing the homogeneity of the field values existing in the

spatial domain. However, when treating time merely as another di-

mension for a time-varying field, difficulties frequently arise due to

the discrepancy between the field's spatial and temporal resolutions.

In addition, treating spatial and temporal dimensions equally often

preyer:is the possibility of detecting the coherence that is unique in

the temporal domain. Using the proposed data structure, our algo-

rith_n can meet the follo,_ing goals. First. l'x_th spatial and tempo-
rai coherence 'are identified and exploited for accelerating the ren-

dering process. Second. our algorithm allows the user to supply
the desired error tolerances at run time for the purpose of image-

quality/rendering-speed trade-off. -Third, the amount of data that

are required to be loaded into main memory is reduced, and thus
the I/O overhead is minimized. This low I/O overhead makes our

algorithm suitable for out-of-core applications.
Key'words: scalar field visualization, volume visualization, volume

rendering, time-varying fields.

1 Introduction

Visualizing large-scale time-varying fields remains one of the most

challenging research problems. While a majority of the steady-

state visualization techniques can be readily applied to time-varying
fields the sheer size of data often makes the task of interactive ex-

ploration impossible. The difficulties mainly come from the fact
that only a small portion of data in the entire time series can fit
into main memo_' at a time. and that the computation cost is of-

ten too high for the algorithm to perform in real-time. This pa-

per proposes an algorithm that addresses both issues to facilitate an

efficient rendering of three-dimensional time-varying fields. The

underlying visualization method is direct volume rendering, which
has been widely used in various areas such as medical imaging.

structure analysis, earth science, and computational fluid dynamics.

The advantage of using direct volume rendering techniques is that

both opaque and translucent structures can be visualized at the same

time. Unf_,rtunately. the computation cost of direct volume render-

ing is often too high lot interacti,,e applications. To improve the

• NASA Ames Research Cenler. Mail Stop T27A-2. Moffctt Field, CA

94035 (hwshen @nas.nasa.gov._.
t NASA Ames RoseaF_h_Centcr. Mail Stop T27A_l.Moffeu Field. CA

940_..._s nasa. gov) "_

_";'NASA Ames Research Center. Mail Stop

_ (Ichiang@nas nasa go_) T27_t_A

performance, various software and hardware solutions have been

proposed in the past [I, 2, 3, 4]. However, most of those meth-
otis focus on the rendering of a single volume, and only a few ap-

proaches were proposed for time-varying volume rendering [5.6]

In this paper, we present a new algorithm for rapid rendering

of time-varying volumes. We note that temporal coherence is fre-

quently present in a time-series volume and, using that coherence

appropriately, we can save rendering time and reduce the I/O over-

head. We propose a new hierarchical data structure that is capable

of capturing both the temporal and the spatial coherence. Conven-
tional hierarchical data structures such as octrees are effective in

characterizing the homogeneity of the field salues existing in the

spatial domain. However. whe_ treating time merely as another di-

mension fora :ime-_ar3'ing field, difficulties frequent/) arise d':.: to

the discrepancy between the field's spatial and teml:x_ral rcsolut, 3ns

In addition, treating spatial and temporal dimensions equally often

prevents the possibility of detecting the coherence that is unique in

the temporal domain. Using the proposed data structure, our algo-

rithm can meet the following goals. First, both spatial and tempo-
rat coherence are identified and exploited for accelerating the ren-

dering process. Second, our algorithm allows the user to supply
the desired error tolerances at run time for the purpose of image-

quality/rendering-speed trade-off. Third, the amount of data that

are required to be loaded into main memory is reduced, and thus
the I/O overhead is minimized. This low 1/O overhead makes our

algorithm suitable for out-of-core applications.

In the following, v.e first discuss related work on hierarchi-

cal data structures and time-varying volume rendering. Our r_ew

spatial-temporal hierarchical data structure is then described. We
show that how a direct volume rendering method can benefit from

the new data structure. Finally, we present experimental results

from several time-varying volume data sets.

2 Related Work

Many researchers have proposed the use of hierarchical data struc-

tures to speed up rendering of a steady-state volume. Levoy[4] clas-

sifies the volume into a binary representation based on the under-

lying voxels" opacities. Utilizing the classification, a pyramid is
constructed for the purpose of space-leaping and adaptive termina-

hon of ray tracing. Laur and Hanrahan[31 proposed to store the vox-
els" mean value and standard deviation at ea_'h node of the pyramid

Given a user-supplied error tolerance, an octree is fit to the pyramid.
and the traversal of the octree allows the volume to be drawn in dif-

ferent resolutions. The idea of storing data accuracy at each nt_lc

allows trading the image quality for faster rendering speed. Wil-
helms and Van Gelder further extend this idea and store voxel and

cell trilinear functions at the octree node[6]. They also show that the

multi-dimensional hierarchical scheme can straightforwardly sup-

portfour-dimensionaldatasuch as time-varying scalar fields.

To explicitly exploit the temporal coherence, Shen and

Johnson[5] proposed a differential volume rendering algorithm,

which employs a difference encoding scheme to extract the vol-
ume's evolution over time. To start a volume animation, an initial

image is first generated using a regular volume rendering method.

For the subsequent time steps, only pixels that correspond to the

voxels that change values are updated by casting new sampling

rays. The differential volume rendering algorithm can save not only

on rendering time, but also the disk space used to store the volume
series. However, the lossless difference encoding scheme might not

have the best performance when floating point data are encountered.

A different approach of volume rendering is proposed by West-

ermann [7]. In his method, wavelet transform is employed to con-
struct volumes of multi-resolutions in the form of wavelet coef-

ficients. To extract the temporal evolution of the volume data,

Westerman proposed to use the Lipschitz exponents to analyze the
wa_,'elet coefficients in time and to detect local regularity. For those

regions with higher temporal variation, finer resolutions are used,

and volume rendering is perform on the wavelet domain directly.

The technique introduced in this paper primarily focuses on di-

rect volume rendering on the physical domain. We devise a hier-

archical data representation similar to octrees, but one that is more

suitable for capturing both temporal and spatial coherence for time-

varying data. in addition, we pay special attention to the fact that

the size of a typical time-varying data set often exceeds the ca-

pacities of both texture memory and main memory existing in a
workstation Furthermore, we be!ie:e that the adaptive error con-

trol proposed hy Laur and Hanrahan, and Wilhelms and Vat, Gelder,

is important ft_r ir,_eractive applications: there:ore this capaoility is

built into our algorithm.

3 Time-Space Partition Tree

In this section, we describe our new data structure, Time-Space Par-

tition Tree (TSP Tree). which is used to represent a time-varying

volume hierarchically in both spatial and temporal domains. While
the octree data structures can be extended to four-dimensional trees

with one extra dimension representing time, there are several no-

ticeable problems. First, the spatial and temporal resolutions could

be very different, and this discrepancy makes it difficult to locate the

temporal coherence in certain regions. We demonstrate the prob-

lem using an extreme but representative example. Let us assume

that there is a time-varying 512 x 512 x 512 volume with two

time steps. It is only possible to subdivide the four-dimensional ar-

ray inlo sixteen 256 x 256 x 256 subvolumes with divisible time,

and the subsequent branchings involve only spatial subdivisions.

This implies that no temporal coherence for subvolumes smaller
than 256 x 256 x 256 can be detected Another problem of us-

ing the four-dimensional trees is that coupling spatial and tempo-
rat domains makes it difficult to locate regions with only temporal

coherence but not spatial coherence. This problem can be demon-

strated by another example. Let us assume that a subvolume has a

dramatic value variation within the spatial domain but remains un-

changed across several time steps. I,i four-dimensional space the

overall value coherence v,ould appear to be low even though the

temporal coherence alone has a strong presence. As a result, the

temporal c{_herence is not detected.

Techniques that decouple temporal and spatial domains for a bet-
ter utilization of the temporal coherence have been proposed in dif-

ferent applications. Shen proposed a Temporal Hierarchical Index

Tree [81 for isosurface extraction in time-varying scalar fields. The

tree recursively bisects the time domain and classifies data ceils into

different Lime spans based on the cells' temporal coherence. Shen
uses the data structure to reduce the size of the isosurface cell search

index and to reduce thc I/O overhead A similar approach wa._ pro-

posed by Finkelstein et al. in generating multiresolution videos[9].
In their method, a binary tree in the time domain, called time tree,

is employed to store image frames corresponding to different time

spans. The image frame at each node of the binary tree is repre-

sented by a quadtree data structure which can capture the spatial
coherence. For those frames in different time steps, but which have

temporal coherence in certain regions, links between the nodes in
the time tree are created to express the relationships. Both of the

data structures mentioned cannot be directly adopted for direct vol-

ume rendering. The temporal hierarchical index tree does not main-

tain the spatial locality of the volume cells, but this locality is fairly

important for direct volume rendering. In the case of the time tree,
the fixed links between nodes preclude the possiblity of adjusting

the error tolerance that is used to define the coherence at run time.

In addition, given the fact that the octree nodes need to be drawn in

appropriate visibility order in direct volume rendering, the proce-

dure of following the links to access all the necessary subvolumes
in correct order would be very complicated.

In the following, we present a new data structure called 17me-

Space Partition (TSP) tree. The TSP tree is designed to hierarchi-

cally represent a time-varying volume both in temporal and spatial

domains. The temporal coherence is exploited based on the idea
that if the data in the volume are unchanged in a given time ;pan,

it is only necessary to perform rendering once and reuse the same
image for the animation sequence. Combined with the exploitation

of spatial coherence, the time-varying volume rendering speed can

be accelerated.

3.1 Data Structure

The TSP tree is a timc-sunplemented octree. The skele:on of a TSP

tree is equivalent to a regular complete octree, which recursixel2_'

subdivides the volume spatially until all subvolumes reach a pre-
defined minimum size. The difference between a TSP tree and a

regular octree is that the TSP tree node contains both spatial and

temporal information about the underlying data in the subvolume,

while a regular octree node only contains the spatial information.

To store the temporal information, each TSP tree node itself is a

binary tree in the time span [0, t] associated with the time-varying
field. Similar to Finkelstein et al. "s time tree[9] and Shen's tempo-

ral hierarchical index tree[8], the binary tree bisects the given time

span until a unit time step is reached. Figure [??] depicts the TSP

and binary time trees.
Every node in the binary time tree of a TSP tree node represents

the same subdomain in the volume but a different time span. The

information stored in a subnode includes:

• The mean value of the voxels in the subvolume across all the

time steps in the particular time span

• The standard deviation to the voxel values in the subdomain

• A measurement of the temporal coherence for the subvolume

within the time span

The mean value and the standard deviation can be computed

straightforwardly. That is:

IJ_,t

• Mean - _.t
,V

V/• Standard Deviation = _-'_!_""" (

where t_,j is the value of voxel i at time step t. and .V is the tolal
number of voxels in the suhvoiume across all the time step.,,. Note

that the formula shown here for computing the standard deviation

is equivalent to the standard formula usually presented in statistics
literature but is more suitable for the one-pass bottom-up octree

construction.

To quantify a volume's temporal coherence in a given time span

[tl, t2], we propose to use the mean of the individual voxels' stun-
chard deviations over time. That is, we treat each voxel as an in-

dependent variable and compute its standard deviation among the

t2 - tl + 1 samples in the time span [tl,t2]. We then compute

the average value of the standard deviations from all the voxels in
the given subvolume and use this value as a measurement for the
subvolume's temporal coherence. Mathmatically, this is:

t=t2 V" 2 z 2. s(v,)
V t2-tl+l \ ,2--tl+l

• Temporal Coherence =
rl

where the s(v,) is the voxel v,'s standard deviation in time span

[tl. t2], and n is the number of voxels within the subvohime. The
temporal coherence, as defined above, is more effective than the
overall standard deviation in four-dimensional space. For. the data

variation within the spatial domain at an individual time step does
not have a direct effect on our measurement. Thus, the temporal

coherence, which exists in those subvolumes that does not have any

spatial coherence, can still be detected.
The mean. standard deviation, and temporal coherence quanti-

ties are used for the traversal of the TSP tree during the volume

rendering proce>s, wh'ch is explained in the following sections.

3.2 Tree Traversal

The TSP tree adopts an opposite approach for combining spatial

and temporal hierarchies comparing to Finkelstein et at. 's time tree
[9] which uses the binary time tree as the main skelton and encodes

a spatial quadtree into each time tree node. The intention behind our
design is to maintain the visibility order m_d spatial locality among

the subvolumes in the process of TSP tree raversing.

For a given series of time-varying volumes, the TSP only needs

to be contructed once and can be repeatedly employed when per-

forming volume rendering. To initiate a rendering at run time, the

user supplies the current time step and the error tolerances for both
the standard deviation of the volume and the temporal coherence.

The tolerance for the standard deviation provides a stopping crite-

rion during the tree traversal so that the regions satisfying this cri-

terion, i.e., having tolerable spatial coherence, are rendered using

their mean values for the encompassed volumes. The error toler-

ance for the temporal coherence, i.e., mean of the individual vox-
els" standard deviations over time. is used to identify regions where

their volume renderered images can be reused across several time

steps. Based on the error tolerances and the current time step, the

traversal of the TSP tree is done by using the regular octree traversal

strategy. That is. we recursively visit the tree node starting from the
root to check if its spatial and temporal coherence satisfy the user's

tolerance. If yes, we render this subvolume as a whole. Otherwise

we walk do_n to its eight children following the back-to-front visi-

bility order, _hich can be readily determined based on the viewing

direction [10], and continue the traversal.

As mentioned previously, each TSP tree node itself is a binary
time tree. For each TSP tree node. we perform the error checking,

starting from the root of the time tree, by using the following steps:

• Check if the temporal coherence measure at this node is
smaller than the user tolerance. If no, traverse down to the

branch of the time tree that corresponds to the current time

and repeat this step. Otherwise. go to the next step.

• Check if the standard deviation is smaller than the user tol-

erance. If yes, then the associated mean value is used to
draw the entire subvolume and terminate the TSP tree traver-

sat along this path. Otherwise, return to the TSP a'aversal
main routine and indicate that it is necessary to go down to
the children of the current TSP tree node.

The end result of the TSP traversal consists of twer types of sub-

volumes. The first type has low spatial variation and, therefore, is

represented by average values. The second type has high variation
and, therefore, the actual data are used.

3.3 Volume Rendering

OuLvolume rendering algorithm adopts the divide-and-conquer
paradiagm. That is. the subvolumes gathered during the traversal

process are rendered independently, and the final image is a compo-
sition of the intermediate results from the subvolumes. In the case

of performing volume rendering by using ray casting techniques.
the intermediate results are subimages with additional opacity in-

formation for the final blending. If the three-dimensional texture

mapping hardware is used, the intermediate results may be trasient

polygons from the slicing planes.

One of the main goals of the TSP tree algorithm is to accelerate

the time-varying volume rendering. To achieve this, we save the

intermediate results from the rendering of the subvolumes in their
associated TSP tree nodes. When the user continues to render a dif-

ferent time step. we repeat the tree traversal process as ment,oned

above. If nodes that have high temporal coherence are encountered

and if the intermediate rendering results stored from a previous ren-

dering still cover the current time step, we can entirely skip the ren-
dering process and directly reuse the results. This is illustrated in

Figure[??].

The performance gain by using the TSP tree is determined by
both the data characteristics and by the error tolerance specified by

the user. If the user wishes to perform a quick preview of a time-

varying volume animation, a higher error tolerance can be used. On
the other hand, if the user demands full accuracy and if temporal

coherence resides in the data set, the TSP will detect and utilize

this coherence for speeding up the rendering.

3.4 Memory Optimization and Out-of-Core Ren-

dering

In the process of constructing the TSP tree, the volume is not subdi-
vided into individual voxels. Instead, we use a predefined minimum

size for the subvolume so that the leaf nodes of the TSP tree in fact

are volume bricks. There are two primary reasons for this. First,

by limiting the minimum size of the subvolume, the storage space

required by the TSP tree is significantly reduced. Second. since
our divide-and-conquer approach renders each subvolume indepen-

dently, not limiting the minimum brick size would inevitably in-
crease the overhead of compositing a large number of small subim-

ages to form the final image.

In addition to reducing storage and the overhead for rendering.
the use of bricks as the basic blocks in the TSP tree guarantees the

locality of memory access. This characteristics is extremely impor-

tant for out-of-core applications [ll, 12]. In fact, the high memory

access locality provided by the TSP tree also facilitates an efficient
use of the three-dimensional texture hardware which usually has a

much more limited memory capacity. We have implemented a vol-

ume rendering algorithm which contains the the application-control

demand paging system proposed by Cox and Ellswonh. Experi-
mental results are shown in section'?.

4 Conclusions

We have presented a new data structure called]time-Space Partition

(TSP) tree. The TSP tree is designed to hierarchically represent a

time-varying volume both in temporal and spatial domains. The
temporal coherence is exploited based on the idea that if the data in
the volume are unchanged in a given time span, it is only necessary
to perform rendering once and reuse the same image for the anima-

tion sequence. Combined with the exploitation of spatial coherence,
the time-varying volume rendering speed can be accelerated.

Acknowledgments

This work was supported in part by NASA contract NAS2-14303.
We would like to thank Ravi Samtaney, Neal Chaderjian, and Peggy

Li for providing their data sets. Special thanks to Randy Kaem-

meter for his meticulous proofreading of this manuscript and valu-

able suggestions. We also thank Tim Sandstrom and other mem-

bers in the Data Analysis Group at NASA Ames Research Center

for their helpful comments and technical support.

References

[i] P. Lacroute and M. Levoy. Fast volume rendering using a

shear-warp factorization of the viewing transformation. In

Proceedings of SIGGRAPH 94, pages 45 I--458. ACM SIG-
GRAPH, 1994.

[2] K.-L. Ma. J.S. Painter, C.D. Hansen, and M.E Krogh. Par-

allel volume rendering using binary-swap image composi-

tion. IEEE Computer Graphics and Applications. 14(4):59-

68, 1994.

[3] D. Laur and P. Hanrahan. Hierarchical splating: A progressive

refinement algorithm for volume rendering. In Proceedings of

SIGGRAPH 91, pages 285-287. ACM SIGGRAPH, 1991.

[4] M. Levoy. Efficient ray tracing of volume data. ACM Trans-

actions on Graphics, 9(3):245-261, 1990.

[5] H.-W. Shen and C.R. Johnson. Differential volume rendering:

A fast algorithm for flow animation. In Proceedings of Visu-
alization '94, pages 188--195. IEEE Computer Society Press.

Los Alamitos, CA, 1994.

[6] J. Wilhelms and A. Van Gelder. Multi-dimensional tree for
controlled volume rendering and compression. In Proceed-

ings of 1994 Symposium on Volume Visualization, pages 27-
34. IEEE Computer Society Press, Los Alamitos, CA, 1994.

[7] R. Westermann. Compression domain rendering of time-
resolved volume data. In Proceedings of Hsualization '95.

pages 168-178. IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[8] H.-W. Shen. Isosurface extraction in time-varying fields using

a temporal hierarchical index tree. In Proceedings of Hsnal-
ization '98, pages 159-166. 1EEE Computer Society Press,

Los Alamitos, CA, 1998.

[9] A. Finkelstein, C.E. Jacobs, and D.H. Salesin. Multiresolution
video. In Proceedings of ACM SIGGRAPH '96. pages 281-

290, 1996.

[10] S. Fang, R. Srinvasan, S. Huang, and R. Raghavan. De-
formable volume rendering by 3d texture mapping and octree

encoding. In Proceedings of _qsualization '96, pages 73-80.

IEEE Computer Society Press. Los Alamitos, CA, 1996.

[11] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and R Sloan. in-
teractive ray tracing for isosurface rendering. In Proceedings

of Visualization '98. pages 233--238. IEEE Computer Society
Press, Los Alamitos, CA, 1998.

[12] M. Cox and D. Ellsworth. Application-controlled demand

paging for out-of-core visualization. In Proceedings of tr_u -

alization '97, pages 235-24.4. IEEE Computer Society Press,
Los Alamitos, CA, 1997.

